
Practical Processing of Mobile Sensor Data for
Continual Deep Learning Predictions

Kleomenis Katevas, Ilias Leontiadis, Martin Pielot, Joan Serrà

1st International Workshop on  
Embedded and Mobile Deep Learning

June 23, ACM MobiSys 2017

Camera(s)

Proximity Sensor

Ambient Light Sensor

Microphone(s)

GPS

Accelerometer

Gyroscope

Bluetooth

Magnetometer
WiFi

NFC

Barometer

Motion Coprocessor

Calls
Network data

App usage

Notifications

Charging state

Notification center

Ringer mode

Screen status

Screen orientation

Battery

SMS

Traditional Machine
Learning Pipeline

Input Data 
(Raw)

Feature
Extraction

Machine
Learning
Algorithm

• Accelerometer
• Battery level
• Network data activity
• Noise level
• Call logs
• Location
• Screen Status
• …

• Mean and Max Acceleration
• Battery drain levels in the last hour
• Data received during the day
• Average ambient noise level during

the last five minutes
• Time since the last outgoing call
• Current distance from home
• Number of device unlocks
• …

• Random Forests
• XGBoost
• …

Time consuming

Who needs Feature
Engineering?

Input Data 
(Raw)

Feature
Extraction

Deep
Learning

• Mean and Max Acceleration
• Battery drain levels in the last hour
• Data received during the day
• Average ambient noise level during

the last five minutes
• Time since the last outgoing call
• Current distance from home
• Number of device unlocks
• …

• Accelerometer
• Battery level
• Network data activity
• Noise level
• Call logs
• Location
• Screen Status
• …

Time consuming

Deep Neural Networks

Input layer Output layerHidden layers

Recurrent Neural Networks
(RNNs)

Source: Andrej Karpathy, 2015

Deep Learning Pipeline

CappingStructure Sensor
Data and GT Normalisation Structure Data

for Training
Time-based

Compression

x y w

S1 t1 0 0 0.4 0 0 0

S2 t2 0.1 0.2 0 0 0 0

S3 t3 0 0 0 0.2 0 0

S4 t4 0 0 0.5 0 0 0

S5 t5 0.3 0.1 0 0 1 0.7

S6 t6 0 0 0 0.5 0 0

x y w

t1+2+3 0.1 0.2 0.4 0.2 0 0

t4+5 0.3 0.1 0.5 0 1 0.7

t6 0 0 0 0.5 0 0

• Si: Sensor event (one-hot encoded)

• ti: Time delta

• x: Sensor values

• y: Ground truth

• w: Weight

Deep Learning Pipeline

CappingStructure Sensor
Data and GT Normalisation Structure Data

for Training
Time-based

Compression

x y w

S1 t1 0 0 0.4 0 0 0

S2 t2 0.1 0.2 0 0 0 0

S3 t3 0 0 0 0.2 0 0

S4 t4 0 0 0.5 0 0 0

S5 t5 0.3 0.1 0 0 1 0.7

S6 t6 0 0 0 0.5 0 0

x y w

t1+2+3 0.1 0.2 0.4 0.2 0 0

t4+5 0.3 0.1 0.5 0 1 0.7

t6 0 0 0 0.5 0 0

• Rescale all interval
data to 0.05-1.

Deep Learning Pipeline

CappingStructure Sensor
Data and GT Normalisation Structure Data

for Training
Time-based

Compression

x y w

S1 t1 0 0 0.4 0 0 0

S2 t2 0.1 0.2 0 0 0 0

S3 t3 0 0 0 0.2 0 0

S4 t4 0 0 0.5 0 0 0

S5 t5 0.3 0.1 0 0 1 0.7

S6 t6 0 0 0 0.5 0 0

x y w

t1+2+3 0.1 0.2 0.4 0.2 0 0

t4+5 0.3 0.1 0.5 0 1 0.7

t6 0 0 0 0.5 0 0

• Cap to the 95th
percentile.

• Cap time deltas to 60
minutes.

Deep Learning Pipeline

CappingStructure Sensor
Data and GT Normalisation Structure Data

for Training
Time-based

Compression

x y w

S1 t1 0 0 0.4 0 0 0

S2 t2 0.1 0.2 0 0 0 0

S3 t3 0 0 0 0.2 0 0

S4 t4 0 0 0.5 0 0 0

S5 t5 0.3 0.1 0 0 1 0.7

S6 t6 0 0 0 0.5 0 0

x y w

t1+2+3 0.1 0.2 0.4 0.2 0 0

t4+5 0.3 0.1 0.5 0 1 0.7

t6 0 0 0 0.5 0 0

Deep Learning Pipeline

CappingStructure Sensor
Data and GT Normalisation Structure Data

for Training
Time-based

Compression

S1 … … … Sn

S1 … … … Sn

S1 … … … Sn

Sn+1 … … … S2n

Sn+1 … … … S2n

Sn+1 … … … S2n

S2n+1 Sl

S2n+1 … Sm

S2n+1 … … … S3n

Batch Size
Bucket contains
3 users

Batch Batch Batch

Sequence Length
Number of time-ordered
events per batch, per user

Bucket

x:	[Sensor1,	Sensor2, …, Sensorn] y w

Input Sample

Case Study: Predicting
Reactiveness to Notifications

• 279 users: collected detailed
mobile phone usage logs using
an Android app.

• Age: 18 to 66 years (M = 37.7,
SD = 11.1).

• Gender: 52.7% female and
47.3% male.

• For a period of 5 weeks we
collected 446,268 notifications
from a variety of apps.

Data Collection
Periodical (10 minutes) Event-driven

Accelerometer App Usage

Battery Audio (Source, Music)

Data (Rx, Tx, MobRx, MobTx) Charging State

Light Notification Received

Noise Notification Center

Semantic Location Ringer Mode

Screen Status

Screen Orientation

Data Collection
Periodical (10 minutes) Event-driven

Accelerometer App Usage

Battery Audio (Source, Music)

Data (Rx, Tx, MobRx, MobTx) Charging State

Light Notification Received

Noise Notification Center

Semantic Location Ringer Mode

Screen Status

Screen Orientation

Model Architecture

+

Fully Connected Layer (50 units)

Time Distributed PreLU

LSTM layer 1 (500 units)

LSTM layer 2 (500 units)

Fully Connected Layer with Sigmoid Activation Function

Data Input

Prediction

Evaluation

Training
(2	weeks)

Test
(1	week)

Validation	
(1	week)

Unused	Set Unknown	
Test

June 7th June 28th July 5th July 12th

279

001

254

Time

U
se

rs

Results
AU

C
Ac

cu
ra

cy

0

0.25

0.5

0.75

1

Validation Test Unknown Test

0.6910.7020.713 0.6960.70.706
0.667

0.6980.697
0.6690.6810.679

Inverse frequency (1/f)
Inverse square root of frequency (1/sqrt(f))
No weights (binary)
Inverse logarithm of frequency (1/log(f))

Results
AU

C
Ac

cu
ra

cy

0

0.25

0.5

0.75

1

Validation Test Unknown Test

0.6880.7020.717
0.6710.6780.688

0.4980.4970.507

Baseline Uncompressed Compressed

0.0 0.2 0.4 0.6 0.8 1.0
False PRsitive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
Rs

iti
ve

 R
at

e
ROC of the test set using the time-based

compression and inverse log-frequency weights

Conclusions
• Introduced an approach for preparing time series

sensor data for deep learning applications.

• Demonstrated the effectiveness in a case study.

• Achieved a 40% performance increase compared
to a probabilistic random baseline.

• The model generalises to unknown users.

Future Work
• Evaluate each notification category separately.

• Compare the performance to canonical
approaches (i.e. XGBoost - feature engineering).

• Improve the compression strategy.

• Explore more sophisticated deep learning
techniques (e.g. transfer learning, generative
adversarial networks).

Ilias Leontiadis Martin Pielot Joan Serrà

