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Traditional Machine 
Learning Pipeline
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• Accelerometer 
• Battery level 
• Network data activity 
• Noise level 
• Call logs 
• Location 
• Screen Status 
• …

• Mean and Max Acceleration 
• Battery drain levels in the last hour 
• Data received during the day 
• Average ambient noise level during 

the last five minutes 
• Time since the last outgoing call 
• Current distance from home 
• Number of device unlocks 
• … 

• Random Forests 
• XGBoost 
• …

Time consuming



Who needs Feature 
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Deep 
Learning

• Mean and Max Acceleration 
• Battery drain levels in the last hour 
• Data received during the day 
• Average ambient noise level during 

the last five minutes 
• Time since the last outgoing call 
• Current distance from home 
• Number of device unlocks 
• … 

• Accelerometer 
• Battery level 
• Network data activity 
• Noise level 
• Call logs 
• Location 
• Screen Status 
• …

Time consuming



Deep Neural Networks
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Recurrent Neural Networks 
(RNNs)

Source: Andrej Karpathy, 2015



Deep Learning Pipeline

CappingStructure Sensor 
Data and GT Normalisation Structure Data 

for Training
Time-based 

Compression

x y w

S1 t1 0 0 0.4 0 0 0

S2 t2 0.1 0.2 0 0 0 0

S3 t3 0 0 0 0.2 0 0

S4 t4 0 0 0.5 0 0 0

S5 t5 0.3 0.1 0 0 1 0.7

S6 t6 0 0 0 0.5 0 0

x y w

t1+2+3 0.1 0.2 0.4 0.2 0 0

t4+5 0.3 0.1 0.5 0 1 0.7

t6 0 0 0 0.5 0 0

• Si: Sensor event (one-hot encoded) 

• ti: Time delta 

• x: Sensor values 

• y: Ground truth 

• w: Weight 
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• Rescale all interval 
data to 0.05-1.



Deep Learning Pipeline
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• Cap to the 95th 
percentile. 

• Cap time deltas to 60 
minutes.



Deep Learning Pipeline

CappingStructure Sensor 
Data and GT Normalisation Structure Data 

for Training
Time-based 

Compression

x y w

S1 t1 0 0 0.4 0 0 0

S2 t2 0.1 0.2 0 0 0 0

S3 t3 0 0 0 0.2 0 0

S4 t4 0 0 0.5 0 0 0

S5 t5 0.3 0.1 0 0 1 0.7

S6 t6 0 0 0 0.5 0 0

x y w

t1+2+3 0.1 0.2 0.4 0.2 0 0

t4+5 0.3 0.1 0.5 0 1 0.7

t6 0 0 0 0.5 0 0



Deep Learning Pipeline

CappingStructure Sensor 
Data and GT Normalisation Structure Data 

for Training
Time-based 

Compression
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Batch Size
Bucket contains 
3 users 

Batch Batch Batch

Sequence Length
Number of time-ordered
events per batch, per user

Bucket

x:	[Sensor1,	Sensor2, …, Sensorn] y w

Input Sample



Case Study: Predicting 
Reactiveness to Notifications

• 279 users: collected detailed 
mobile phone usage logs using 
an Android app. 

• Age: 18 to 66 years (M = 37.7, 
SD = 11.1). 

• Gender:  52.7% female and 
47.3% male. 

• For a period of 5 weeks we 
collected 446,268 notifications 
from a variety of apps.



Data Collection
Periodical (10 minutes) Event-driven

Accelerometer App Usage

Battery Audio (Source, Music)

Data (Rx, Tx, MobRx, MobTx) Charging State

Light Notification Received

Noise Notification Center

Semantic Location Ringer Mode

Screen Status

Screen Orientation
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Model Architecture
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Evaluation
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Conclusions
• Introduced an approach for preparing time series 

sensor data for deep learning applications. 

• Demonstrated the effectiveness in a case study. 

• Achieved a 40% performance increase compared 
to a probabilistic random baseline. 

• The model generalises to unknown users.



Future Work
• Evaluate each notification category separately. 

• Compare the performance to canonical 
approaches (i.e. XGBoost - feature engineering). 

• Improve the compression strategy. 

• Explore more sophisticated deep learning 
techniques (e.g. transfer learning, generative 
adversarial networks).
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