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Deep Learning Pipeline

CappingStructure Sensor 
Data and GT Normalisation Structure Data 

for Training
Time-based 

Compression

x y w

S1 t1 0 0 0.4 0 0 0

S2 t2 0.1 0.2 0 0 0 0

S3 t3 0 0 0 0.2 0 0

S4 t4 0 0 0.5 0 0 0

S5 t5 0.3 0.1 0 0 1 0.7

S6 t6 0 0 0 0.5 0 0

x y w

t1+2+3 0.1 0.2 0.4 0.2 0 0

t4+5 0.3 0.1 0.5 0 1 0.7

t6 0 0 0 0.5 0 0

• Si: Sensor event (one-hot encoded) 

• ti: Time delta 

• x: Sensor values 

• y: Ground truth 

• w: Weight 



Deep Learning Pipeline

CappingStructure Sensor 
Data and GT Normalisation Structure Data 

for Training
Time-based 

Compression

x y w

S1 t1 0 0 0.4 0 0 0

S2 t2 0.1 0.2 0 0 0 0

S3 t3 0 0 0 0.2 0 0

S4 t4 0 0 0.5 0 0 0

S5 t5 0.3 0.1 0 0 1 0.7

S6 t6 0 0 0 0.5 0 0

x y w

t1+2+3 0.1 0.2 0.4 0.2 0 0

t4+5 0.3 0.1 0.5 0 1 0.7

t6 0 0 0 0.5 0 0

• Si: Sensor event (one-hot encoded) 

• ti: Time delta 

• x: Sensor values 

• y: Ground truth 

• w: Weight 



Deep Learning Pipeline

CappingStructure Sensor 
Data and GT Normalisation Structure Data 

for Training
Time-based 

Compression

x y w

S1 t1 0 0 0.4 0 0 0

S2 t2 0.1 0.2 0 0 0 0

S3 t3 0 0 0 0.2 0 0

S4 t4 0 0 0.5 0 0 0

S5 t5 0.3 0.1 0 0 1 0.7

S6 t6 0 0 0 0.5 0 0

x y w

t1+2+3 0.1 0.2 0.4 0.2 0 0

t4+5 0.3 0.1 0.5 0 1 0.7

t6 0 0 0 0.5 0 0

• Si: Sensor event (one-hot encoded) 

• ti: Time delta 

• x: Sensor values 

• y: Ground truth 

• w: Weight 



Deep Learning Pipeline

CappingStructure Sensor 
Data and GT Normalisation Structure Data 

for Training
Time-based 

Compression

x y w

S1 t1 0 0 0.4 0 0 0

S2 t2 0.1 0.2 0 0 0 0

S3 t3 0 0 0 0.2 0 0

S4 t4 0 0 0.5 0 0 0

S5 t5 0.3 0.1 0 0 1 0.7

S6 t6 0 0 0 0.5 0 0

x y w

t1+2+3 0.1 0.2 0.4 0.2 0 0

t4+5 0.3 0.1 0.5 0 1 0.7

t6 0 0 0 0.5 0 0



Deep Learning Pipeline

CappingStructure Sensor 
Data and GT Normalisation Structure Data 

for Training
Time-based 

Compression

S1 … … … Sn

S1 … … … Sn

S1 … … … Sn

Sn+1 … … … S2n

Sn+1 … … … S2n

Sn+1 … … … S2n

S2n+1 Sl

S2n+1 … Sm

S2n+1 … … … S3n

Batch Size
Bucket contains 
3 users 

Batch Batch Batch

Sequence Length
Number of time-ordered
events per batch, per user

Bucket

x:	[Sensor1,	Sensor2, …, Sensorn] y w

Input Sample



Case Study: Predicting 
Reactiveness to Notifications
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Conclusions
• Introduced an approach for preparing time series 

data for deep learning applications. 

• Demonstrated the effectiveness in a case study. 

• Achieved a 40% performance increase compared 
to a probabilistic random baseline. 

• The model generalises to unknown users.



Future Work

• Comparison of the performance to canonical 
approaches. 

• Improve the compression strategy. 

• Explore more sophisticated deep learning 
techniques (e.g. transfer learning, generative 
adversarial networks).
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