
Demo Abstract: BatteryLab, A Distributed Power Monitoring
Platform For Mobile Devices

https://batterylab.dev

Matteo Varvello†, Kleomenis Katevas⋄, Wei Hang‡, Mihai Plesa†, Hamed Haddadi†⋄,
Fabián E. Bustamante‡, Benjamin Livshits†⋄

† Brave Software, ⋄ Imperial College London, ‡ Northwestern University

ABSTRACT
There has been a growing interest in measuring and optimizing the
power efficiency of mobile apps. Traditional power evaluations rely
either on inaccurate software-based solutions or on ad-hoc testbeds
composed of a powermeter and amobile device. This demonstration
presents BatteryLab, our solution to share existing battery testing
setups to build a distributed platform for battery measurements.
Our vision is to transform independent battery testing setups into
vantage points of a planetary-scale measurement platform offering
heterogeneous devices and testing conditions. We demonstrate
BatteryLab functionalities by investigating the energy efficiency of
popular websites when loaded via both Android and iOS browsers.
Our demonstration is also live at https://batterylab.dev/ .

CCS CONCEPTS
• Hardware → Batteries; • Software and its engineering →
Cloud computing.

KEYWORDS
Energy consumption, Smartphones, Distributed system
ACM Reference Format:
Matteo Varvello, Kleomenis Katevas, Wei Hang, Mihai Plesa, Hamed Had-
dadi, Fabián E. Bustamante, Benjamin Livshits. 2019. Demo Abstract: Bat-
teryLab, A Distributed Power Monitoring Platform For Mobile Devices:
https://batterylab.dev. In The 17th ACM Conference on Embedded Networked
Sensor Systems (SenSys ’19), November 10–13, 2019, New York, NY, USA. ACM,
New York, NY, USA, 2 pages. https://doi.org/10.1145/3356250.3361946

1 INTRODUCTION
Advances in cloud computing have simplified the way that mo-
bile apps are tested. Device farms [1, 12] let developers test apps
across a plethora of mobile devices, in real time. To the best of our
knowledge, no existing device farm offers hardware-based battery
measurements, where the power drawn by a device is measured
by connecting its battery to an external power meter. Instead, few
startups [9, 13] offer software-based battery measurements where
device resource monitoring (screen, CPU, network, etc.) are used to

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
SenSys ’19, November 10–13, 2019, New York, NY, USA
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6950-3/19/11. . . $15.00
https://doi.org/10.1145/3356250.3361946

infer the power consumed by few devices for which a calibration
was possible [5]. This suggests a demand for battery measurements,
but a prohibitive cost for deploying hardware-based solutions.

In the research community, hardware-based battery measure-
ments are quite popular [3, 4, 10]. The common research iter con-
sists of buying the required hardware (often an Android device and
a Monsoon power monitor [14]), set it up on a desk, and then use
it sporadically. This is because battery testbeds are intrinsically
local, i.e., they require a researcher or an app tester to have physical
access to the device and the power meter.

This demonstration presents BatteryLab, a distributed platform
for high-accuracy energy measurements on Android and iOS de-
vices. Inspired by PlanetLab [15], we developed a platform where
members can both contribute and use remote resources (e.g., one
or more iOS / Android phones and a power monitor) in exchange
of access to the hardware resources offered by other platform mem-
bers. Experiments can be automated (i.e., a script that automates
some actions to the device) or user-based (i.e., a user can control
the device remotely via a web browser).

BatteryLab currently consists of two vantage points and four
mobile devices. We will demonstrate how BatteryLab can be used
by an experimenter to benchmark the energy efficiency of popular
websites when loaded via both Android and iOS browsers.

2 SYSTEM OVERVIEW
BatteryLab consists of two main components: an access server, and
a series of distributed vantage points. The access server, hosted
on AWS, runs our website [17] and manage both vantage points
and experiment scheduling. The access server is built atop of Jenk-
ins [11] which enables an end-to-end test pipeline while supporting
multiple users and concurrent timed session.

Vantage points (see Figure 1) are managed by a Raspberry Pi [16]
which runs our software to enable remote testing. This consists of
an ssh channel with the access server and device mirroring [6] which
provides full remote control of test devices, via the browser. Next,
a circuit switch connects to the Raspberry Pi’s General-Purpose
Input/Output (GPIO) interface and allows a programmatic selection
of the phone that needs to be measured by the power monitor. The
test devices also connect to the Raspberry Pi via USB, WiFi, and
Bluetooth, for automation/instrumentation purpose.

Experimenters interact via BatteryLab using the Jenkins interface,
where they can request access to a specific vantage point or device.
Such access consists of either full remote control of the device (see
Figure 2) or to run a job, i.e., install a target application and run
some tests. At any point in time the power monitor can be activated
and fine-grained battery measurements can be collected.

https://batterylab.dev
https://batterylab.dev/
https://batterylab.dev
https://doi.org/10.1145/3356250.3361946
https://doi.org/10.1145/3356250.3361946


SenSys ’19, November 10–13, 2019, New York, NY, USA Varvello et al.

Figure 1: Vantage point architecture.

BatteryLab’s main functionalities are available via a set of Python
APIs, e.g., to select a device or enable battery data collection. Device
automation is instead offered via the following solutions:

Android Debugging Protocol (Android) – ADB [7] is a powerful
tool/protocol to control an Android device. Commands can be sent
over USB, WiFi, or Bluetooth. While USB guarantees highest relia-
bility, it interferes with the power monitor due to the power sent
to activate the USB micro-controller at the device. This is solved by
sending commands over WiFi or Bluetooth. However, using WiFi
implies not being able to run experiments leveraging the mobile
network, and ADB-over-Bluetooth requires a rooted device. Based
on an experimenter needs, BatteryLab can dynamically switch be-
tween the above automation solutions.

UI Testing (Android and iOS) – This solution uses UI testing frame-
works (e.g., Android’s user interface tests [8] or Apple’s XCTest
framework [2]), to produce a separate version of the testing app,
configured with automated actions. The advantage of this solution,
compared with ADB, is that it does not require a communication
channel with the Raspberry Pi. The main drawback is that it re-
stricts the set of applications that can be tested since access to an
app source code is required.

Bluetooth Keyboard (Android and iOS) – This approach auto-
mates a test device via (virtual) keyboard keys (e.g., locate an app,
launch it, and interact with it). The controller emulates a typical
keyboard service to which test devices connect via Bluetooth. This
approach is generic and thus works for both Android and iOS de-
vices, with no rooting needed. Since it relies on Bluetooth, it also
enables experiments on the cellular network. The main drawback
is that the level of automation depends both on the OS and app
support for keyboard commands.

3 DEMONSTRATION
BatteryLab currently consists of two vantage points, one located
in London, UK (Imperial College University) and one in Evanston,
IL (Northwestern University). Four devices are available to an ex-
perimenter: 3 Android devices and an iPhone 7. For the purpose of
this demonstration, we will move the UK vantage point to the con-
ference venue and showcase its functioning. We will leverage the
other vantage point to showcase BatteryLab’s remote capabilities.

Figure 2: BatteryLab’s GUI.

The demonstration shows how an experimenter can use Bat-
teryLab to benchmark the energy efficiency of a target website.
We start by explaining how the above job is implemented, and
how it gets deployed over BatteryLab. Next, we use our live tool
at https://batterylab.dev/ to benchmark the power consumption of
several websites when loaded via popular web-browsers.

We will further demonstrate how Brave [18] leverages Battery-
Lab as part of it continuous integration testing suite. We show how
a battery benchmark is automatically executed — generating an
energy score — for each new browser release and pre-release.

ACKNOWLEDGMENTS
Katevas andHaddadi were partially supported by the EPSRCDatabox
and DADA grants (EP/N028260/1, EP/R03351X/1).

REFERENCES
[1] Amazon Inc. AWS Device Farm. https://aws.amazon.com/device-farm/.
[2] Apple Inc. XCTest - Apple Developer Documentation. https://developer.apple.

com/documentation/xctest.
[3] D. H. Bui, Y. Liu, H. Kim, I. Shin, and F. Zhao. Rethinking energy-performance

trade-off in mobile web page loading. In Proc. ACM MobiCom, 2015.
[4] Y. Cao, J. Nejati, M. Wajahat, A. Balasubramanian, and A. Gandhi. Deconstructing

the energy consumption of the mobile page load. Proceedings of the ACM on
Measurement and Analysis of Computing Systems, 1(1):6:1–6:25, June 2017.

[5] X. Chen, N. Ding, A. Jindal, Y. C. Hu, M. Gupta, and R. Vannithamby. Smartphone
energy drain in the wild: Analysis and implications. In Proc. ACM SIGMETRICS,
2015.

[6] Genymobile. Display and control your Android device. https://github.com/
Genymobile/scrcpy.

[7] Google Inc. Android Debug Bridge. https://developer.android.com/studio/
command-line/adb.

[8] Google Inc. Android Developers - Automate user interface tests. https://developer.
android.com/training/testing/ui-testing.

[9] Greenspector team. Greenspector. https://greenspector.com/en/.
[10] C. Hwang, S. Pushp, C. Koh, J. Yoon, Y. Liu, S. Choi, and J. Song. Raven: Perception-

aware optimization of power consumption for mobile games. In Proc. ACM
MobiCom, 2017.

[11] Jenkins. The leading open source automation server. https://jenkins.io/.
[12] Microsoft, Visual Studio. AppCenter ismission control for apps. https://appcenter.

ms/sign-in.
[13] Mobile Enerlytics. The Leader In Automated App Testing Innovations To Reduce

Battery Drain. http://mobileenerlytics.com/.
[14] Monsoon Solutions Inc. High voltage power monitor. https://www.msoon.com.
[15] PlanetLab. An open platform for developing, deploying, and accessing planetary-

scale services. https://www.planet-lab.org/.
[16] Raspberry Pi. Raspberry Pi 4 Model B. https://www.raspberrypi.org/products/

raspberry-pi-4-model-b/.
[17] The BatteryLab team. BatteryLab. https://batterylab.dev.
[18] The Brave team. Brave: you are not a product. https://brave.com.

https://batterylab.dev/
https://aws.amazon.com/device-farm/
https://developer.apple.com/documentation/xctest
https://developer.apple.com/documentation/xctest
https://github.com/Genymobile/scrcpy
https://github.com/Genymobile/scrcpy
https://developer.android.com/studio/command-line/adb
https://developer.android.com/studio/command-line/adb
https://developer.android.com/training/testing/ui-testing
https://developer.android.com/training/testing/ui-testing
https://greenspector.com/en/
https://jenkins.io/
https://appcenter.ms/sign-in
https://appcenter.ms/sign-in
http://mobileenerlytics.com/
https://www.msoon.com
https://www.planet-lab.org/
https://www.raspberrypi.org/products/raspberry-pi-4-model-b/
https://www.raspberrypi.org/products/raspberry-pi-4-model-b/
https://batterylab.dev
https://brave.com

	Abstract
	1 Introduction
	2 System Overview
	3 Demonstration
	Acknowledgments
	References

