
Finding Dory in the Crowd: Detecting Social Interactions using
Multi-Modal Mobile Sensing

Kleomenis Katevas
Imperial College London

Katrin Hänsel
Queen Mary University of London

Richard Clegg
Queen Mary University of London

Ilias Leontiadis
Samsung AI

Hamed Haddadi
Imperial College London

Laurissa Tokarchuk
Queen Mary University of London

ABSTRACT
Remembering our day-to-day social interactions is challenging
even if you aren’t a blue memory challenged fish. The ability to
automatically detect and remember these types of interactions is
not only beneficial for individuals interested in their behavior in
crowded situations, but also of interest to those who analyze crowd
behavior. Currently, detecting social interactions is often performed
using ethnographic studies, computer vision techniques and man-
ual annotation-based data analysis. However, mobile phones offer
easier means for data collection that is easy to analyze and can
preserve the user’s privacy. In this work, we present a system for
detecting stationary social interactions inside crowds, leveraging
multi-modal mobile sensing data such as Bluetooth Smart (BLE),
accelerometer and gyroscope. To inform the development of such
system we conducted a study with 24 participants where we asked
them to socialize with each other for 45 minutes. We built a ma-
chine learning system based on gradient-boosted trees that predicts
both 1:1 and group interactions with a 30.2% performance increase
compared to a proximity-based approach. By utilizing a community
detection-based method, we further detected the various group
formation that exist within the crowd. Using mobile phone sen-
sors already carried by the majority of people in a crowd makes
our approach particularly well suited to real-life analysis of crowd
behavior and influence strategies.

ACM Reference Format:
Kleomenis Katevas, Katrin Hänsel, Richard Clegg, Ilias Leontiadis, Hamed
Haddadi, and Laurissa Tokarchuk. 2019. Finding Dory in the Crowd: Detect-
ing Social Interactions using Multi-Modal Mobile Sensing. In SenSys-ML
’19: The 1st Workshop on Machine Learning on Edge in Sensor Systems, No-
vember 10, 2019, New York, NY, USA. ACM, New York, NY, USA, 6 pages.
https://doi.org/10.1145/3362743.3362959

1 INTRODUCTION
The ability to automatically detect social interactions in unorches-
trated scenarios is highly sought after inmany areas including social
and behavioral science, crowd management, and targeted advertis-
ing. This ability would facilitate a wide range of technologies, e.g.,

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
SenSys-ML ’19, November 10, 2019, New York, NY, USA
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-7011-0/19/11. . . $15.00
https://doi.org/10.1145/3362743.3362959

crowd reconfiguration in evacuation management or networking
analytics.

There have been many attempts for detecting social interactions
automatically, primarily from video analysis. Most of the initial
works use resource-hungry computer vision techniques [2, 7, 13].
Other approaches use custom-made wearable hardware that use
sensors such as infrared light [6, 12, 21, 23], accelerometer [12],
microphone [6, 12] and Bluetooth [12]. These works report reason-
able accuracy but are expensive and problematic to scale in larger
environments.

Smartphones and their wide range of embedded sensors en-
able researchers to explore social interactions in an automated
way that depends entirely on the use of mobile sensing technol-
ogy [16, 24, 28], without the need for additional wearable equipment
or computer vision systems. Mobile sensing-based solutions are
also easier and more cost efficient to deploy in unknown or new
spaces as they only rely on the users’ own hardware. Early systems
that use mobile sensing report accurate results, but focus on de-
tecting one-to-one social interactions [24] or rely on pre-trained
models that only work with specific devices [24]. Others are re-
stricted to controlled only environments that only cover a subset
of natural-occurring formations [15], or use the phone’s micro-
phone for detecting body distances [28] — an approach that raises
concerns about the user’s privacy.

In this paper, we investigate an approach for detecting social
interactions in a natural, non-artificial social setting that depends
on sensors available in a modern smartphone (i.e., Bluetooth Smart,
Accelerometer and Gyroscope). We focus on the interactions that
usually happen in social gatherings or networking events (e.g., con-
ferences, exhibition etc.) where people form standing interactions
with two or more participants. We built a machine learning sys-
tem based on gradient-boosted trees to detect both 1:1 and group
interactions in a short granularity of 1 second windows. We then
use a community detection algorithm based on graph theory to
detect the various group formation that exist within the crowd. We
evaluate our system in a case study with 24 participants interacting
together for 45 minutes. Notice that due to software limitations,
the phones were not able to broadcast a Bluetooth signal when the
device is locked. Therefore, we ended up using coin-shaped beacons
as a wearable device that simulates the smartphone’s Bluetooth
broadcasting function.

2 RELATEDWORK
One of the first attempts to identify stationary, face-to-face inter-
actions in an automated way is the Sociometer by Choudhury and
Pentland [6], a wearable device that can be placed on each person’s

https://doi.org/10.1145/3362743.3362959
https://doi.org/10.1145/3362743.3362959

SenSys-ML ’19, November 10, 2019, New York, NY, USA Katevas et al.

shoulder and identify other people wearing the same device using
Infrared (IR) sensors. In addition, it is equipped with an accelerom-
eter sensor to capture motion and a microphone to capture speech
information. Olguin et al. [23] developed a successor, called the
Sociometric badge, that is smaller is size and includes Bluetooth,
IR, microphone and accelerometer sensors. Huang et al. [12] de-
signed a low-power wearable device capable of detecting human
interactions using ultrasonic signal. They evaluated their device
in a series of human experiments with both sitting and standing
interactions. Montanari et al. [21] created a wearable device named
Protractor that uses near-infrared light to monitor the user prox-
imity and relative body-orientation. Even though the evaluation
of this work is focused on the social behavior of an existing group
that is interacting, Protractor could also be used to detect human
interactions within crowds by using the estimated proximity and
relative orientation between participants.

Opposed to deploying custom made sensors and badges, novel
work focused on leveraging off-the-shelf devices and smartphone
sensors. Palaghias et al. [24] presented a real-time system for recog-
nizing social interactions using smartphones. They used the RSSI
of Bluetooth Classic radios and a 2-layer machine learning model
to detect the user’s interactive zone and an improved version of
uDirect research [11] that utilizes a combination of accelerometer
and magnetometer sensors to estimate the user’s facing direction
with respect to the earth’s coordinates. This work reported results
of 81.40% accuracy for detecting social interactions, with no previ-
ous knowledge of the device’s orientation inside the user’s pocket.
However, it has been evaluated in a limited dataset with eight partic-
ipants while an observer was keeping notes that were later used as
ground truth. Moreover, it is only capable of detecting one-to-one
social interactions using a specific device model (HTC One S) and
has not been evaluated in scenarios of interactions with dynamic
sizes. Finally, it assumes that a Bluetooth connection is maintained
between devices for continuously monitoring the RSSI, having an
impact on the device’s battery. Zhang et al. [28] developed a system
that detects social interactions in the context of encountering with
the use of audio sensing. They first used a combination of the smart-
phone’s accelerometer, microphone and speaker, and with the use of
inaudible acoustic signals they detected when two people approach
and stop in front of each other. Next, they applied voice profiling on
the audio recordings to confirm if the pair is engaged into an actual
conversation. They evaluated their approach in a real-world use
case with 11 participants for 1 hour using self-reported question-
naires at the end of the study as ground truth. The evaluation of this
work that reports 6.9% false positives and 9.7% false negatives, was
conducted over the complete case study (i.e., who met with whom
during the event) instead of a more fine-grained evaluation over
shorter windows. Thus, it is not capable of capturing information
such as the duration of an interaction, or more advanced crowd
dynamics such as type of group formations that were conducted
over time. Moreover, such approach requires a continuous audio
recording from each user’s smartphone, a process that raises eth-
ical and privacy concerns when using it in real-world scenarios.
Katevas et al. [16] presented a simplistic proximity-based approach
for detecting stationary interactions in planned events, using the
interpersonal proximity estimated by the device’s Bluetooth Smart
sensor. They evaluated the social interactions that took place in

a controlled environment with six participants for four minutes,
reporting a performance of 90.9% precision and 92.4% recall. This
work was evaluated in a limited dataset (approx. 5 minutes long)
with artificially created interactions instructed by the designer of
the study. Moreover, the proximity-based algorithm they used is
similar to the baseline used in this work.

3 EXPERIMENTAL SETUP
In order to identify and evaluate the sensors needed for detecting
stationary interactions in a natural setting, data was collected from
participants during a social networking event.

37 potential participants were recruited via email and flyers.; 24
of those took part in the actual study of which 9 were male and 15
female. Participants were selected based on mobile phone model
(iPhone 4 or higher) and operating system version (iOS 7 or higher)
and availability of the iBeacon sensor. Two devices experienced
errors during the study (i.e., Bluetooth Smart sensor reported an
internal error and did not collect data) and were excluded from the
data analysis, resulting into 22 valid participants.

3.1 Procedure
Participants installed a sensor data collection app, based on Sens-
ingKit for iOS v0.5 continuous sensing framework [15]. The app
automated the sensor calibration, participant registration and data
collection. Participants were invited to an indoor location space,
6.57 × 5.36 meters, with 3.90m height; a natural space that is often
used for social events and performances. Two HD cameras were
fixated at a DMX lightning rig (3.27m height) to record video (but
not audio). These videos were annotated to provide the ground
truth for social interaction (see Section 4.1). Before the study began,
participants were asked to read the information sheet and sign
the consent form. Participants were equipped with a Radius Net-
works RadBeacon Dot1 each (coin shaped Bluetooth 4 -based low
energy beacons), to place in one of their pockets. All coin-shaped
beacons were pre-configured to 10ms advertising interval (highest)
and −18dBm broadcasting power. Half of the participants were
instructed to place the beacons in the left pocket and the other
half in the right pocket. The phone was always placed in the other
pocket to avoid interference. During the setup process, participants
were guided through the mobile app configuration. This process
included a facial photograph for ground truth identification and
demographics (age, gender, weight, and height). Finally, partici-
pants were asked to collectively perform a gesture with the phone
in front of of the cameras. The hereby recorded sensor data of each
participant was later synced with the 25f ps video feed, achieving
a sync accuracy of ±40ms.

Participants were then instructed to socially network for a total
of 45 minutes. The discussion topic was intentionally left open,
trying to simulate a realistic networking scenario. After the session,
participants returned the beacons, submitted the collected data and
were reimbursed with £20 for their time. In total, 99 one-to-one in-
teractions were observed with a mean duration of 254.9sec (±161.7)
and 22 group interactions (i.e., interactions that include more than

1https://radiusnetworks.com

https://radiusnetworks.com

Finding Dory in the Crowd SenSys-ML ’19, November 10, 2019, New York, NY, USA

two participants) with a mean duration of 117.2sec (±139.4). A sep-
arate interaction begins when the members of a group change. If
the group configuration consisted less than 5sec , it is not counted.

3.2 Sensor Data Set
The dataset collected for each participant contains the following
sensor data:

• iBeacon Proximity: The RSSI from the mobile device with
all beacons in range.

• Linear Acceleration: The device measured acceleration
changes in three-dimensional space. This excludes the 1g
acceleration produced by gravity.

• Gravity: The orientation of the device relative to the ground,
by measuring the 1g acceleration produced by gravity.

• Rotation Rate: The device’s rate of rotation around each
of the three spatial axes.

The sampling rate was set to the maximum supported (100Hz)
for all motion and orientation sensors. iBeacon Proximity sensor
has a fixed (non-customizable) sample rate of 1Hz.

4 DETECTING SOCIAL INTERACTIONS
4.1 Ground Truth
Video recorded from two different angles was annotated by two
independent annotators using ELAN multimedia annotator soft-
ware [27]. As the aim of the study is to detect stationary interaction
only, the annotators logged the beginning and end of each station-
ary interaction for each participant separately. The annotations
were cross-validated afterwards and finally verified by a third per-
son. The instructions that the annotators followed were based on
Kendon’s F-formation system [17]:

An interaction begins at the moment two or more sta-
tionary people cooperate together to maintain a space
between them to which they all have direct and exclu-
sive access.

4.2 Target Variable
The dataset has a total of 645,895 labels for each combination of
the 22 valid participants interacting. The target variable is binary,
with the following two classes: {1} when a pair of participants is
interacting together, and {0} when they are not. That resulted into
38,332 labels in class 1 (6.31%), and 607,563 labels in class 0 (93.69%).
The dataset is naturally imbalanced since it includes one label for
all combinations of the participants interacting with each-other
per second. The level of this imbalance depends on the number of
people interacting, but also on the type of interaction (e.g., one-to-
one, groups of three etc.).

4.3 Sensor Data Pre-processing
The data and video feed were synchronized based on the synchro-
nous wave-gesture participants performed in front of the cameras.
Each device was recording sensor data using the internal CPU time
base register as timestamp, so pre-alignment between different
types of sensor data (e.g., accelerometer with iBeacon Proximity)
was not required. For all iBeacon Proximity data, all data reporting

Unknown values (where RSSI is −1) were excluded. This usually oc-
curs at the beginning of iBeacon ranging process due to insufficient
measurements to determine the state of the other device [1], or for
a few seconds after the device gets out of the beacon’s broadcasting
range. All measurements from each user’s own beacon (i.e., from a
participant’s phone to their beacon) were also excluded.

The signal from all motion data was re-sampled and interpolated
to 100Hz. Finally, the magnitude (resultant vector) was computed
from the three axes to counteract different physical phone align-
ments in the participants’ pockets. The iBeacon sensor was the only
sensor that reported missing values. Since most machine learning
algorithms do not accept features with unknown values, a data im-
putation process was required. Thus, missing values (corresponding
to 71,88% of the collected beacon data) were replaced with the max-
imum available distance; the reason was mostly sensors being out
of broadcaster range and meaning interaction is not feasible.

4.4 Proximity Estimation
The Path Loss Model (PLM) was applied in order to estimate the
proximity (d) between each device and all beacons in range using
the RSSI (P(d)), as shown in the following formula:

d = 10
P (d0)−P (d)−X

10×n , (1)

where P(d0) is the Measured Power (in dBm) at 1-meter dis-
tance, n the path loss exponent, d the distance in which the RSSI is
estimated and X a component that describes the path loss by possi-
ble obstacles between the transmitter and the receiver. The value
n = 1.5 was set as a default constant for indoor environments [19].
The value X = 0 was also chosen as it was required to measure a
direct contact where no obstacles (e.g., other participants) between
the two devices exist. In the situation that another participant ex-
ists in between, PLM would report a longer distance due to the
decreased RSSI, and consequently, the accuracy of the distance esti-
mation will decrease. This is a desired effect as it is only wanted
to cluster whether the two users are within a range that a social
interaction can be achieved. According to Hall [10], personal social
interactions are achievable between 0.5 and 1.5 meters distance.

4.5 Normalized Proximity
The Normalized Proximity (NP) is suggested by this work as an
easy to compute approach for detecting social interactions using
proximity-based information. More specifically, the distance of
two participants is used (computed using the Path Loss Model
discussed in Section 4.4) with all unknown values (i.e., when the
pair is out of beacon range) being replaced with the max of all
distance estimations. A proximity value x is normalized into the
range [0, 1] as follows:

ŷ =
xmax − x

xmax − xmin
, (2)

where ŷ is an estimate as to whether the pair is interacting, and
x is the estimated proximity between the pair and the xmin and
xmax are the minimum and maximum values of x for all pairs in
the data set. Because ŷ is in the range [0, 1] it can be compared to
probability estimates.

SenSys-ML ’19, November 10, 2019, New York, NY, USA Katevas et al.

4.6 Feature Engineering
A series of common features were computed for all C(22, 2) = 231
combinations of the participant pairs. Features reflecting the cur-
rent moment were initially computed, in a static window of 1 sec,
following with features reflecting past information. A set of fea-
tures that are commonly included in mobile sensing problems were
used, e.g., features extracted from motion and orientation sensors.
To compute these features, the magnitude (resultant vector) of the
3-axis data were used in order to account for different physical align-
ment of each device within the users’ pockets. Thus, no alignment
of each user’s motion and orientation sensors was pre-required.

Interpersonal Space Features. iBeacon Proximity sensor data of a
pair includes two measurements: Let rssii j be the RSSI between the
two participants as measured from the device of user i and rssi ji
be the RSSI from the same distance as measured from the device
of user j. The mean of the two measurements was computed as an
indication of how close the two participants are in space:

fprox_r ssi_mean = (rssii j + rssi ji)/2 (3)

In addition, a feature that represents the absolute difference
between the two measurements was computed:

fprox_r ssi_dif f = |rssii j − rssi ji | (4)

Note that in this case, the raw RSSI was used as the same hard-
ware was used for broadcasting a beacon signal across all partici-
pants, and thus, a Measured Power constant is not required. In the
case of multiple devices being used, then a feature that estimates
the interpersonal distance based on a calibrated Measured Power
constant would be required, using the PLM equation mentioned in
Section 4.4.

Device Position Features. Information about the device position is
also important as body orientation is expected to influence the RSSI
signal between the two devices. For that reason, four features have
been developed that includes the information of the device position
(left vs. right per participant) using one-hot encoding.

Motion and Orientation Features. By using the measurements of the
linear acceleration sensor, a feature that indicates the time since
the participant has moved (in seconds) was added. A threshold of
0.15д was empirically chosen, indicating whether a user is moving
or not, and computed the absolute difference between the pair. It is
expected that if two users are moving, they will stop at the same
moment and engage into a conversation, and thus, the value of that
feature will be close to zero. When both users had the status ‘in
motion’, the feature was set to NaN (Unknown).

For all motion sensor data (i.e., linear acceleration, gravity, rota-
tion rate), a cross correlation function was applied on an overlap-
ping window of 10 seconds and extracted the maximum correlation,
as well as the distance (in seconds) from the max correlation, as an
indication of how similar a pair is behaving on those windows. The
10 seconds constant was chosen as indicated by [19], but further
investigation in the range of 2 to 60 also verified it as the optimal
constant.

Past Information Features. In order to take advantage of past infor-
mation available in the data set, the min, max, mean and std was
computed on all time-series features (i.e., excluding the one-hot

encoded device positioning features), in an overlapping window of
10 seconds.

4.7 Evaluation Procedure
For evaluating the performance of the model, a standard 10-fold
cross-validation schema was used. The dataset was initially split
over time, however, due to the time-series nature of our study, a
significant overfitting was reported. More particularly, since partic-
ipants were changing their interactive state at any given moment,
the model was memorizing the features per split and inferring them
back with very high performance, due to information leakage. Thus,
the data was split per participant combination (i.e., 23 samples out
of 231 due to the 10-fold schema) rather than over time.

In the context of this work, Precision is: from the detected inter-
actions, how many of them did the model detect correctly, whereas
Recall is: from all interactions taking place, how many of them
did the model detect. Depending on the use case, applications can
emphasize one measure over the other. The evaluation metrics that
will be used in the rest of this report is Precision-Recall (PR) curve.
Although ROC curves are heavily usedwhen reporting performance
in classification problems, due to the nature of our dataset being
unbalanced, PR plots as suggested for this case by [26] and [8] were
used.

4.8 Model Choice
As a learning model we use XGBoost [5]. XGBoost is a state-of-the-
art gradient boosting regression tree algorithm that has emerged as
one of the most successful feature-based learning models in recent
machine learning competitions. We empirically found XGBoost
consistently outperformed other well-established classifiers, such as
Logistic Regression [22], Support Vector Machines [9], or Random
Forests [4]. We used XGBoost v0.7.2.1 as part of the Python library
scikit-learn [25] v0.19.1 and its XGBoost Python wrapper.

A parameter tuning was performed on a 20% subset of the dataset
(i.e., 46 samples out of 231). This subset was only used for the model
tuning task and was never used in the training/validation pro-
cedure. The aim was to discover the model’s configuration that
maximizes the Average Precision (AP) performance. More specifi-
cally, a grid search algorithm over all possible combinations of the
most influential parameters was followed. The configuration with
the best performance of AP 80.4% (i.e., performance using the 20%
subset) had the parameters max_depth=4, colsample_bytree=0.2,
subsample=0.5 and learning_rate=0.05. This configuration is
used in the rest of this section for training and validating the model
with the remaining 80% of the data set.

4.9 Detecting Group Formations
Detecting communities is important for a variety of applications
including mobile social networks, recommender systems, security,
and crowd management. One of our objectives is to automatically
detect such group formations and classify the formed communities.
Our concept for detecting group formation is based on graph theory.
Each moment (in seconds) is represented as an undirected weighted
graph G = (V , E,w), with a set of vertices V and weighted edges
E(w). Each vertex corresponds to a participant, each weighted edge
corresponds to the probability of a pair interacting, as detected

Finding Dory in the Crowd SenSys-ML ’19, November 10, 2019, New York, NY, USA

Figure 1: Performance of XGBoost classifier using a
Precision-Recall (PR) Curve. The figure also includes the
performance of the Naïve Probabilistic Classifier (NPC) and
the Normalized Proximity (NP) for easy comparison.

using the XGBoost classifier, and each detected community C cor-
responds to a group formation.

We use a modularity optimization approach [3] that is fast to
compute even in large networks and relies on the time-based sta-
bility of the network conditions at short time intervals [18], also
known as resolution constant. Initially, every vertex Vi is assigned
to a communityCj . Each vertex is then evaluated separately to join
its neighbor’s community. The join that achieves the maximum pos-
itive gain in modularity is the one that is committed. If no positive
modularity is achieved, the vertex remains in its initial community.
This process is applied to all vertices sequentially until it converges.
Next, a new network is created using the communities as vertices
(C), one edge between the connected communities with C(w) the
sum of all E(w) that belong to that community, and a self-loop edge
for the internal vertices. The algorithm is repeated until a maximum
modularity is achieved.

We applied the community detection algorithm per second using
NetworkX2 v2.1 to handle graph operations on the network and
considered a group formation when a community exists within the
graph. We evaluate the performance of our approach in three ways:
(a) link-level, where a link represents an interaction between a pair
of participants, (b) node-level, where a node represents a participant
that belongs to the correct interactive group, and (c) group-level,
where a group is detected to include the correct participants.

5 RESULTS AND DISCUSSION
Our results provide evidence that it is possible to detect interactive
groups of various sizes relying on data collected from mobile de-
vices, with a reasonable performance. That is a link-level detection
performance of 88.8% AP (i.e., 30.2% increase from NP and 469.2%
increase from a Naïve Probabilistic Classifier baseline). Figure 1
shows the performance using a Precision-Recall (PR) curve plot.

2https://networkx.github.io

Figure 2: Performance of group detection at node- and
group-level, using different resolution constants.

Moreover, our work evaluates the interactions in high granularity
of 1 second windows. This is an improvement compared to other
related works that binary detect if a pair has interacted during the
event [24, 28], or use longer windows of a few seconds [19, 20].

Figure 2 shows the performance of the group detection as de-
scribed in Section 4.9. It displays the group detection accuracy
on node- and group-level, using different community detection
resolution constants within the range of 0.1 and 1.0. The optimal
resolution constant in this case, shown in Figure 2, is 0.5, achieving
a node-level performance of 71.1%, and group-level performance
of 75.2%. Applying the same method on the NP baseline with the
optimal resolution of 0.2 gives node-level performance of 48.7%,
and group-level performance at 50.9%.

The dataset that has been analyzed, even though extended com-
pared to other similar studies [16, 24], only represents a subset of
what is expected in similar social gatherings, such as conferences
or other networking events. Other social interactions have not been
investigated such as people interacting in a coffee table, walking
interactions etc. In addition, the device position that has been tested
is the trousers pocket which is a popular position according to [14].
However, other positions should also be considered, such as the
shoulder bags, backpacks, or even holding the device at hand.

6 CONCLUSIONS AND FUTUREWORK
In this work, we introduced a supervised machine learning ap-
proach capable of detecting stationary social interactions of a vari-
ety of sizes inside crowds. Our work does this in a relatively large (as
compared to other related works) study, achieving a performance
of 88.8% AP when evaluating the interactions of the participants on
link-level. Our approach is capable of detecting group formations
at a node-level performance of 71.1%, and group-level performance
of 75.2%.

We believe that our work will be particular useful to researchers
and practitioners wishing to explore crowd dynamics in social
gatherings, event organizers aiming to monetize their events by
providing rich analytics about their attendees, or event attendees
wishing to remember their contacts without the need for exchang-
ing business card or social media details. In future work, we aim to
apply a real-time version of this work in a large-scale social event
and explore the ways in which the crowd is interacting in planned
events.

SenSys-ML ’19, November 10, 2019, New York, NY, USA Katevas et al.

REFERENCES
[1] Apple Inc. Getting Started with iBeacon v1.0. https://developer.apple.com/

ibeacon/Getting-Started-with-iBeacon.pdf, 2014. [Online; accessed 07-April-
2018].

[2] L. Bazzani, M. Cristani, and V. Murino. Decentralized particle filter for joint
individual-group tracking. In Computer Vision and Pattern Recognition (CVPR),
2012 IEEE Conference on, pages 1886–1893, June 2012.

[3] V. D. Blondel, J.-L. Guillaume, R. Lambiotte, and E. Lefebvre. Fast unfolding
of communities in large networks. Journal of Statistical Mechanics: Theory and
Experiment, 2008(10):P10008, 2008.

[4] L. Breiman. Random forests. Mach. Learn., 45(1):5–32, Oct. 2001.
[5] T. Chen and C. Guestrin. XGBoost: a scalable tree boosting system. In Proc. of the

ACM SIGKDD Int. Conf. on Knowledge Discovery and Data Mining (KDD), pages
785–794, 2016.

[6] T. Choudhury and A. Pentland. Sensing and modeling human networks using the
sociometer. In Proceedings of the 7th IEEE International Symposium on Wearable
Computers, ISWC ’03, pages 216–, Washington, DC, USA, 2003. IEEE Computer
Society.

[7] M. Cristani, L. Bazzani, G. Paggetti, A. Fossati, D. Tosato, A. Del Bue, G. Menegaz,
and V. Murino. Social interaction discovery by statistical analysis of f-formations.
In Proceedings of the British Machine Vision Conference, pages 23.1–23.12. BMVA
Press, 2011. http://dx.doi.org/10.5244/C.25.23.

[8] J. Davis and M. Goadrich. The relationship between precision-recall and roc
curves. In Proceedings of the 23rd international conference on Machine learning,
pages 233–240. ACM, 2006.

[9] N. Deng, Y. Tian, and C. Zhang. Support Vector Machines: Optimization Based
Theory, Algorithms, and Extensions. Chapman & Hall/CRC, 1st edition, 2012.

[10] E. T. Hall. The hidden dimension. Doubleday & Co, 1966.
[11] S. A. Hoseinitabatabaei, A. Gluhak, and R. Tafazolli. udirect: A novel approach

for pervasive observation of user direction with mobile phones. In Pervasive
Computing and Communications (PerCom), 2011 IEEE International Conference on,
pages 74–83, March 2011.

[12] W. Huang, Y.-S. Kuo, P. Pannuto, and P. Dutta. Opo: A wearable sensor for
capturing high-fidelity face-to-face interactions. In Proceedings of the 12th ACM
Conference on Embedded Network Sensor Systems, SenSys ’14, pages 61–75, New
York, NY, USA, 2014. ACM.

[13] H. Hung and B. Kröse. Detecting f-formations as dominant sets. In Proceedings
of the 13th International Conference on Multimodal Interfaces, ICMI ’11, pages
231–238, New York, NY, USA, 2011. ACM.

[14] F. Ichikawa, J. Chipchase, and R. Grignani. Where’s the phone? a study of mobile
phone location in public spaces. In 2005 2nd Asia Pacific Conference on Mobile
Technology, Applications and Systems, pages 1–8, Nov 2005.

[15] K. Katevas, H. Haddadi, and L. Tokarchuk. SensingKit: Evaluating the sensor
power consumption in ios devices. In Intelligent Environments (IE), 2016 12th
International Conference on, pages 222–225. IEEE, 2016.

[16] K. Katevas, H. Haddadi, L. Tokarchuk, and R. G. Clegg. Detecting group forma-
tions using iBeacon technology. In Proceedings of the 2016 ACM International
Joint Conference on Pervasive and Ubiquitous Computing: Adjunct, UbiComp ’16,
pages 742–752, New York, NY, USA, 2016. ACM.

[17] A. Kendon. Conducting interaction: Patterns of behavior in focused encounters,
volume 7. CUP Archive, 1990.

[18] R. Lambiotte, J.-C. Delvenne, and M. Barahona. Laplacian dynamics and multi-
scale modular structure in networks. arXiv preprint arXiv:0812.1770, 1, 12 2008.

[19] A. Matic, V. Osmani, A. Maxhuni, and O. Mayora. Multi-modal mobile sens-
ing of social interactions. In Pervasive Computing Technologies for Healthcare
(PervasiveHealth), 2012 6th International Conference on, pages 105–114, May 2012.

[20] A. Montanari, S. Nawaz, C. Mascolo, and K. Sailer. A study of bluetooth low
energy performance for human proximity detection in theworkplace. In 2017 IEEE
International Conference on Pervasive Computing and Communications (PerCom),
pages 90–99, March 2017.

[21] A. Montanari, Z. Tian, E. Francu, B. Lucas, B. Jones, X. Zhou, and C. Mascolo.
Measuring interaction proxemics with wearable light tags. Proceedings of the
ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, 2(1):25, 2018.

[22] J. A. Nelder and R. J. Baker. Generalized linear models. Wiley Online Library,
1972.

[23] D. O. Olguín and A. S. Pentland. Social sensors for automatic data collection.
AMCIS 2008 Proceedings, page 171, 2008.

[24] N. Palaghias, S. A. Hoseinitabatabaei, M. Nati, A. Gluhak, and K. Moessner.
Accurate detection of real-world social interactions with smartphones. In Com-
munications (ICC), 2015 IEEE International Conference on, pages 579–585, June
2015.

[25] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blon-
del, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Courna-
peau, M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Machine learning
in Python. Journal of Machine Learning Research, 12:2825–2830, 2011.

[26] T. Saito and M. Rehmsmeier. The precision-recall plot is more informative than
the roc plot when evaluating binary classifiers on imbalanced datasets. PloS one,
10(3):e0118432, 2015.

[27] P. Wittenburg, H. Brugman, A. Russel, A. Klassmann, and H. Sloetjes. Elan:
a professional framework for multimodality research. In Proceedings of LREC,
volume 2006, page 5th, 2006.

[28] H. Zhang, W. Du, P. Zhou, M. Li, and P. Mohapatra. Dopenc: Acoustic-based
encounter profiling using smartphones. In Proceedings of the 22Nd Annual Inter-
national Conference on Mobile Computing and Networking, MobiCom ’16, pages
294–307, New York, NY, USA, 2016. ACM.

https://developer.apple.com/ibeacon/Getting-Started-with-iBeacon.pdf
https://developer.apple.com/ibeacon/Getting-Started-with-iBeacon.pdf

	Abstract
	1 Introduction
	2 Related Work
	3 Experimental Setup
	3.1 Procedure
	3.2 Sensor Data Set

	4 Detecting Social Interactions
	4.1 Ground Truth
	4.2 Target Variable
	4.3 Sensor Data Pre-processing
	4.4 Proximity Estimation
	4.5 Normalized Proximity
	4.6 Feature Engineering
	4.7 Evaluation Procedure
	4.8 Model Choice
	4.9 Detecting Group Formations

	5 Results and Discussion
	6 Conclusions and Future Work
	References

