
Poster: Towards Characterizing and Limiting Information
Exposure in DNN Layers

Fan Mo
f.mo18@imperial.ac.uk

Imperial College London

Ali Shahin Shamsabadi
a.shahinshamsabadi@qmul.ac.uk

Queen Mary University of London

Kleomenis Katevas
k.katevas@imperial.ac.uk

Imperial College London

Andrea Cavallaro
a.cavallaro@qmul.ac.uk

Queen Mary University of London

Hamed Haddadi
h.haddadi@imperial.ac.uk

Imperial College London

ABSTRACT

Pre-trained Deep Neural Network (DNN) models are increasingly

used in smartphones and other user devices to enable prediction

services, leading to potential disclosures of (sensitive) information

from training data captured inside these models. Based on the con-

cept of generalization error, we propose a framework to measure

the amount of sensitive information memorized in each layer of

a DNN. Our results show that, when considered individually, the

last layers encode a larger amount of information from the train-

ing data compared to the irst layers. We ind that the same DNN

architecture trained with diferent datasets has similar exposure

per layer. We evaluate an architecture to protect the most sensitive

layers within an on-device Trusted Execution Environment (TEE)

against potential white-box membership inference attacks without

the signiicant computational overhead.

CCS CONCEPTS

· Computing methodologies → Distributed artiicial intelli-

gence; · Security and privacy→ Distributed systems security.

KEYWORDS

deep learning, privacy, training data, sensitive information expo-

sure, trusted execution environment

1 INTRODUCTION

On-device DNNs have achieved impressive performance on a broad

spectrum of services such as face recognition for authentication

and speech recognition for interaction. However, DNNs memorize

in their parameters information from the training data [8]. Thus,

keeping DNNs accessible in user devices leads to privacy concerns

when training data contains sensitive information.

Previous works have shown that a reconstruction of the original

input data is easier from a DNN when using the layer’s output

(activation) for inference [1]. In addition to that, a speech or face

recognition model deployed on devices can be attacked by mem-

bership inference attacks (MIA) [7]. This leaks the information

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for proit or commercial advantage and that copies bear this notice and the full citation
on the irst page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

CCS ’19, November 11–15, 2019, London, United Kingdom

© 2019 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-6747-9/19/11.
https://doi.org/10.1145/3319535.3363279

about whether one audio or picture has involved in pre-training

the model, which could further lead to other serious privacy issues.

We hypothesize that the memorization of sensitive information

from training data difers across the layers of a DNN. We present an

approach and show that each layer behaves diferently on the data

they were trained on compared to the data seen for the irst time,

by quantifying the generalization error (i.e. the expected distance

between prediction accuracy of training data and test data [4]).

We further quantify the risk of sensitive information exposure of

each layer as a function of generalization error. The larger the

generalization error, the easier it is to infer sensitive information

from the training set. Our results show that last layers memorize

more sensitive information about training data, and the risk of

information exposure of a layer is independent of the dataset.

To protect the most sensitive layers from potential white-box

attacks [2, 3], we leverage on-device TEE unit (Arm’s TrustZone

(TZ)), as an example of protection mechanism. Experiments are

conducted by training the last layers in the TrustZone and the irst

layers outside the TrustZone. Results show that the overhead in

memory and execution time is minor, thus making it an afordable

solution to protect a model from potential attacks.

2 MEASURING INFORMATION EXPOSURE

2.1 Information Exposure Metric

Based on MIA, we deine the exposure of private information of

an algorithm as the diference between the results obtained on a

database with and without the presence of one data record [5, 7].

Because of its similarity with the generalization error [4, 7], we can

then apply the generalization error EA to measure the exposure of

private information of an algorithm A:

EA = Ez∈T [ℓ(AS , z)] − Ez∈S [ℓ(AS , z)]. (1)

S and T are training dataset and testing dataset respectively.

Let DNN models be A, and AS be the model trained with S . ℓ()

is the lost function. z = (x ,y) refers to data points. Each layer’s

output is the input of next layer until the end of the model, so

A(x) = θL(...θl (...θ1(x)...)...). θi is the layers.

To remove the private information in θl , we create a model Mr

by ine-tuning θl as θpl on S and T and by freezing the parameters

of the other layers of A. During ine-tuning,

θ
(X )

l
← θ

(X )

l
− ηδ

(X )

l
. (2)

https://doi.org/10.1145/3319535.3363279


… …
T

S

… …
S

Fine-tuning the target layerTraining DNN

… …S

θ1
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

θ2
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

θL−1
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

θl
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

θL
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

Copying

A
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

Mr
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

Mp
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit> θpl

<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

θrl
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

Copying

Figure 1: The proposed framework for measuring the risk

of sensitive information exposure in a deep neural network

A trained on a private dataset S . Mr and Mp are obtained by

ine-tuning a target layer l .

X ∈ {S,T }. δ
(X )

l
is the back-propagated error calculated using

θ of the whole model and inputs. Therefore, δ
(X )

l
is dependent on

θ1:l−1,θl ,θl+1:L ,X . By learning on X , the θ
(X )

l
memorises both S

and T , which means that it is generalized and can not be utilized

by MIA for distinguishing S and T .

To remove the θl which contains private information, we simply

consider that after training for a considerable number of epochs

(instead of resetting as random values), if training accuracy does

not signiicantly increase, the initial parameters of θ
(X )

l
only have

a slight inluence on its inal parameters.

θ1:l−1 and θl+1:L are frozen during ine-tuning θ
(X )

l
. Let us deine

the functional relationship Eθl = Rl (θl ). After ine-tuning, the θ
(X )

l
can be presented as

θ
(X )

l
= v(R−1

1:l−1
(Eθ1:l−1 ),R−1i+1:L(E

θl+1:L ),X ). (3)

Equation 3 shows that the θ
(X )

l
include information of X . How-

ever, private information of other layers Eθ1:l−1 and Eθl+1:L are also

passed to θ
(X )

l
.

To exclude these passed private information from other layers,

we create another modelMp by ine-tuning θl as θpl using dataset S

and by freezing all other layers ofA. This lead to θ
(X )

l
keep learning

from S . We simply assume that the overitting efect only sightly

increase after training for a considerable number of epochs and

the training accuracy does not signiicantly increase. Therefore, by

comparing Mr and Mp, we can remove passed information from

θ
(X )

1:l−1
and θ

(X )
i+1:L

and obtain the exposure of private information of

θl as

Eθl =
EMp − EMr

EMp
. (4)

●
●

●

●

●
●

●

0.00

0.25

0.50

0.75

1.00

1 2 3 4 5 6 7

Layer

R
is

k
 o

f 
s
e

n
s
it
iv

e
in

fo
rm

a
ti
o

n
 e

x
p

o
s
u

re

Dataset

● MNIST

Fashion−MNIST

CIFAR−10

Figure 2: The risk of sensitive information exposure of VGG-

7 per layer on MNIST, Fashion-MNIST and CIFAR-10. Error

bars represent 95% CI.

2.2 Model and Datasets

We use VGG-7 [6] as the DNNA, which has six convolutional layers

followed by one fully connected layer (16C3-16C3-MP-32C3-32C3-

MP-32C3-32C3-MP-64FC-10SM). Each layer is followed by ReLU

activation function.

We use three datasets: MNIST, Fashion-MNIST, and CIFAR-10.

MNIST and Fashion-MNIST include 60k training images of 28×28×1

of 10 classes of handwritten digits and clothing respectively. CIFAR-

10 includes 50k training 32 × 32 × 3 images of 10 classes. We split

each set into set S and setT . We use 20 epochs for MNIST, 40 epochs

for Fashion-MNIST, and 60 epochs for CIFAR-10.

2.3 Results and Discussion

Figure 2 shows the risk of sensitive information exposure for each

layer of VGG-7 on all three datasets. The irst layer has the lowest

risk, with the risk increasing as we go through the layers, with the

last convolutional layer having the highest sensitive information

exposure (i.e. 0.63 for both MNIST and Fashion-MNIST and 0.5 for

CIFAR-10). The last layer is a fully-connected layer which has a

lower exposure risk than its previous convolutional layer. In addi-

tion, the order of layers in terms of sensitive information exposure

is almost the same across all three datasets.

3 ON-DEVICE TEE PROTECTION

3.1 Setup

In this section, we develop an implementation and evaluate the

cost of protecting the last layers of an on-device DNN during ine-

tuning by deploying them in the TrustZone of a device (see Figure 3).

TrustZone establishes a private region on the main processor. Both

hardware and software approaches isolate this region to allow

trusted execution. We only protect the most sensitive layers of the

model because the TrustZone’s secure memory is limited and use

the normal execution environment for the other layers.

We use Darknet 1 as DNN library and Open Portable TEE 2 as

the framework for TrustZone on a Raspberry Pi 3 Model B. This

device runs TrustZone with 16 mebibytes (MiB) secure memory.

1https://pjreddie.com/darknet
2https://www.op-tee.org



Edge devices

TZ

3) Deploy

2) Encrypted

Servers

4) Decrypted

5) Output 

(removed 

private

information)

5) Fine-tuning or inference1) Pre-training the model

Figure 3: Proposed protection for sensitive layers (last lay-

ers) of an on-device deep neural network using TrustZone.

●

●●●

●
●

●●

17.0

17.5

18.0

18.5

19.0

O SMFC
1

D FC
2

MP C
3

C
4

E
xe

c
u
ti
o
n
 t
im

e
 (

s
)

●
●

●
● ●●

●

●

25

26

27

28

O SM FC
1

D FC
2

MP C
3

C
4

Layers in TEE

M
e
m

o
ry

 u
s
a
g
e
 (

M
B

)

(a) MNIST

●

●●●

●

●

●●

22.5

23.0

23.5

24.0

24.5

O SMFC
1

D FC
2

MP C
3

C
4

●
●●

●

●

●

●

●

31

32

33

34

O SM FC
1

D FC
2

MP C
3

C
4

Layers in TEE

(b) CIFAR-10

Figure 4: Execution time and memory usage for protect-

ing layers of VGG-7 using the TrustZone. The x-axis corre-

sponds to several last layers included in the TrustZone. O,

SM, FC, D, MP, and C refer to the cost, softmax, fully con-

nected, dropout, maxpooling, convolutional layers of VGG-

7. Number of layers with trainable parameters in the Trust-

Zone are 1, 2, 3, and 4. The dash line represent the baseline,

which runs all the layers outside the TrustZone.

The choice of Darknet is due to its high performance and small

dependencies. The developed implementation in our evaluation

is available online 3. We ine-tune the pre-trained VGG-7 with

MNIST and CIFAR-10, respectively. Several layers are deployed in

the TrustZone from the end, including both layers with (i.e. the con-

volutional and fully connected layer) and without (i.e. the dropout

and maxpooling layer) trainable parameters.

3.2 Results and Discussion

Figure 4 shows the execution time (in seconds) and memory usage

(in MB) of our implementation when securing a part of the DNN in

3https://github.com/mofanv/darknetp

the TrustZone, starting from the last layer, and continuing adding

layers until the maximum number of layers the zone can hold. The

resulting execution times are MNIST: F(7,232) = 3658, p < 0.001;

CIFAR-10: F(7,232) = 2396, p < 0.001 and memory usage is MNIST:

F(7,232) = 11.62, p < 0.001; CIFAR-10: F(7,232) = 20.01, p < 0.001.

The increase however is small compared to the baseline (Execution

time: 1.94% for MNIST and 1.62% for CIFAR-10; Memory usage:

2.43% for MNIST and 2.19% for CIFAR-10).

Speciically, deploying the dropout layer and the maxpooling

layer in the TrustZone increases both the execution time and mem-

ory usage. The reason is that these two layer types have no trainable

parameters, and for Darknet, the dropout and maxpooling are di-

rectly operated based on trainable parameters of their front layer.

Therefore, to run these two types of layers in the TrustZone, their

front layer (i.e. fully connected/convolutional layers) needs to be

copied into the TrustZone, which increases the cost. For layers

with parameters that we aim to protect (1, 2, 3, and 4 in Figure 4),

deploying fully connected layers (i.e. 1, 2) in the TrustZone does

not increase the execution time accumulated on the irst layers, as

well as the total memory usage. Deploying convolutional layers

(i.e. 3 and 4) also leads to an increase of execution time. However,

exhausting most of the available memory of the TrustZone can also

cause an increase in overhead. Overall, for our implementation, pro-

tecting fully connected and convolutional layers have lower costs

than other layers without trainable parameters with the TrustZone.

4 CONCLUSION

We proposed a method to measure the exposure of sensitive in-

formation in each layer of a pre-trained DNN model. We showed

that the closer the layer is to the output, the higher the likelihood

that sensitive information of training data is exposed, which is

opposite to the exposure risk of layers’ activation from test data [1].

We evaluated the use of TrustZone to protect individual sensitive

layers (i.e. the last layers) of a deployed DNN. The results show

that TrustZone has a promising performance at low cost.

Future work includes investigating the advantages of protect-

ing the later layers of a DNN against, among others, white-box

membership inference attacks [3].

REFERENCES
[1] Zhongshu Gu, Heqing Huang, Jialong Zhang, Dong Su, Hani Jamjoom, Ankita

Lamba, Dimitrios Pendarakis, and Ian Molloy. 2018. YerbaBuena: Securing Deep
Learning Inference Data via Enclave-based Ternary Model Partitioning. arXiv
preprint arXiv:1807.00969 (2018).

[2] Luca Melis, Congzheng Song, Emiliano De Cristofaro, and Vitaly Shmatikov. 2019.
Exploiting unintended feature leakage in collaborative learning. IEEE.

[3] Milad Nasr, Reza Shokri, and Amir Houmansadr. 2018. Comprehensive Privacy
Analysis of Deep Learning: Stand-alone and Federated Learning under Passive
and Active White-box Inference Attacks. arXiv preprint arXiv:1812.00910 (2018).

[4] Shai Shalev-Shwartz, Ohad Shamir, Nathan Srebro, and Karthik Sridharan. 2010.
Learnability, stability and uniform convergence. Journal of Machine Learning
Research 11, Oct (2010), 2635ś2670.

[5] Reza Shokri, Marco Stronati, Congzheng Song, and Vitaly Shmatikov. 2017. Mem-
bership inference attacks against machine learning models. In 2017 IEEE Sympo-
sium on Security and Privacy (SP). IEEE, 3ś18.

[6] Karen Simonyan and Andrew Zisserman. 2014. Very deep convolutional networks
for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014).

[7] Samuel Yeom, Irene Giacomelli, Matt Fredrikson, and Somesh Jha. 2018. Privacy
risk in machine learning: Analyzing the connection to overitting. In 2018 IEEE
31st Computer Security Foundations Symposium (CSF). IEEE, 268ś282.

[8] Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol Vinyals.
2017. Understanding deep learning requires rethinking generalization. In Proceed-
ings of the International Conference on Learning Representations (ICLR). France.


	Abstract
	1 Introduction
	2 Measuring information exposure
	2.1 Information Exposure Metric
	2.2 Model and Datasets
	2.3 Results and Discussion

	3 On-device TEE protection
	3.1 Setup
	3.2 Results and Discussion

	4 Conclusion
	References

